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The spectral densities of ensembles of non-Hermitian sparse random matrices are analyzed using the cavity
method. We present a set of equations from which the spectral density of a given ensemble can be efficiently
and exactly calculated. Within this approach, the generalized Girko’s law is recovered easily. We compare our
results with direct diagonalisation for a number of random matrix ensembles, finding excellent agreement.
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INTRODUCTION

For decades, random matrix theory has been the focus of
much attention in both physical and mathematical research,
with an ever-expanding and remarkably diverse list of appli-
cations �for example, see Ref. �1� for an extensive review of
applications in physics�. A problem of particular interest is
that of determining the spectral density of an ensemble of
random matrices. In the early 1950s it was conjectured that
the eigenvalues of certain non-Hermitian random matrix en-
sembles should be spread evenly throughout the unit disk.
Now known as Girko’s law, this conjecture has been the
subject of many rigorous and nonrigorous studies �e.g., Refs.
�2–5�, and references therein�, for various classes of random
matrix ensembles.

It is a natural desire, then, to extend our understanding of
those ensembles that break away from this law. In the more
accessible case of real symmetric matrices, it is known that
the introduction of sparsity �that is, many entries of the ma-
trix being zero� results in behavior radically different from
that seen in the fully connected limit �6–9�. Sparse real sym-
metric matrices have been studied extensively, and there ex-
ists various approximative schemes �7–9�, together with re-
cent exact work �10–12�. As we will see, sparsity also has a
significant effect on the spectral density of general non-
Hermitian matrices; however, this area has not received the
attention it deserves, and consequently a great deal remains
unknown.

In this paper, we tackle the problem of computing the
spectral density of sparse non-Hermitian matrices using the
cavity method �10,13,14�. A simple closed set of equations is
uncovered, whose solution characterizes the spectral density
of a given matrix. These equations are solved analytically in
the fully connected limit, recovering the generalized Girko’s
law of Ref. �5�. We also present the results of a belief-
propagation algorithm to quickly compute the solution for
ensembles of large sparse matrices.

PREPARATION

Consider an ensemble M of N�N complex, non-
Hermitian sparse random matrices. For a given matrix A
�M, we denote the collection of eigenvalues of A by
��i

A : i=1, . . . ,N�; if A is non-Hermitian, it follows that these
�i

A are complex. For a point z=x+ iy in the complex plane,
we write the spectral density of A at z as

�A�z, z̄� =
1

N
�
i=1

N

��x − Re �i
A���y − Im �i

A� . �1�

The spectral density of the ensemble, denoted as ��z , z̄�, re-
sults from averaging �A�z , z̄� over M. Following, for ex-
ample, Refs. �5,15,16�, we are able to write1

�A�z, z̄� = −
1

�N
lim
�→0

�z̄�z ln det H , �2�

where we have introduced the 2N�2N matrix

H � H�z, z̄;�� = 	 �1N i�z1N − A�
i�z1N − A�† �1N


 . �3�

We use �¯� for the complex conjugate and �¯�† for the
conjugate transpose. The next step is to write the determinant
of H in terms of a Gaussian integral. In Ref. �5�, the replica
method was applied to the case of fully connected non-
Hermitian Gaussian ensembles, deriving the generalized Gir-
ko’s law in the limit N→	. However, little progress has
been made in the study of sparse non-Hermitian matrices. To
push forward, we tackle the problem by focusing on the be-
havior of a large single instance. With a modest amount of
foresight, we define N pairs of complex variables


i = 	ui

vi

, i = 1, . . . ,N �4�

and introduce the “Hamiltonian”

H��,z, z̄;�� = �
i=1

N


i
†��12 + i�x�x − y�y��
i

− i �
i,j=1

N


i
†�Aij

h �x − Aij
s �y�
 j , �5�

where �x and �y are the usual Pauli matrices, and we have
written A=Ah+ iAs, with Ah and As Hermitian matrices. Con-
tinuing with the statistical mechanics metaphor, we also in-
troduce a “distribution” P and an “average” �¯�:

P��� =
1

Z
e−H��,z,z̄;��

1We use the notation conventions �z= 1
2 � �

�x − i �
�y �, �z̄= 1

2 � �
�x + i �

�y �.
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�¯� =
 D�P����¯� , �6�

where Z is a normalizing constant. Of course, the measure
we define here is complex and is manifestly not a real sto-
chastic measure. However, much of the mathematics is un-
changed, and it is relatively safe to use this probabilistic
analogy. With this groundwork in place, Eq. �2� may finally
be written as

�A�z, z̄� = lim
�→0

1

�N
�
l=1

N

i�z̄�
l
†�+
l� , �7�

where �+=�x+ i�y. In this formulation, it becomes clear that
the local marginals Pi�
i� will suffice to evaluate �A. We
calculate these marginals using the cavity method.

TREELIKE MATRICES

We consider treelike sparse matrices. Associated with the
matrix A there is a weighted, directed graph GA on N verti-
ces: a directed edge of weight Aij is drawn from vertex i to
vertex j whenever Aij�0. We say the graph GA �and conse-
quently the matrix A� is “treelike” if short loops are rare.
There is a simple link between this graph and the Hamil-
tonian �5�: the interaction of variables 
i and 
 j is encoded in
the edges between i and j. We make the following standard
definitions: a pair of vertices i , j are neighbors if either Aij or
Aji is nonzero; the set of all neighbors of i is denoted �i; ki
denotes the number of neighbors of i �the degree of i�; the
average degree is given by c=N−1�iki.

Notice that, if A is treelike, the variables neighboring 
i
are correlated mainly through 
i. Consider a fictitious situa-
tion in which we have removed the variable 
i. We are in-
terested in the change to the marginal distributions of the
neighboring variables 
l with l��i, which we denote by
Pl

�i��
l�; with their common neighbor now absent, the joint
distribution factorizes

P�i���
l�l��i� = �
l��i

Pl
�i��
l� . �8�

This is known as the Bethe approximation. It is exact on
trees and graphs which remain treelike in the limit N→	.2

The cavity marginals �Pi
�j�� obey simple recursive relations

Pi
�j��
i� =

e−Hi

Zi
�j� 
 D���i\j�e−�l��i\jHil �

l��i\j
Pl

�i��
l� , �9�

where Zi
�j� is a normalizing constant, and we have split the

Hamiltonian �5� into the contributions from single variables
Hi and from pairs of variables Hij, viz.,

Hi = 
i
†��12 + i�x�x − y�y��
i,

Hij = − i
i
†�Aij

h �x − Aij
s �y�
 j − i
 j

†�Aji
h �x − Aji

s �y�
i.

�10�

If the cavity distributions are known, the real marginal dis-
tribution at the vertex i can be recovered by merging the
contributions of the neighbors

Pi�
i� =
e−Hi

Zi

 D���i�e−�l��iHil �

l��i

Pl
�i��
l� . �11�

We see that the set of equations �9� is self-consistently solved
by distributions of a bivariate Gaussian type. Specifically, for
all i=1, . . . ,N and all j��i, the distribution Pi

�j� has the form

Pi
�j��
i� =

1

Zi
�j� exp�− 
i

†�Ci
�j��−1
i� , �12�

where Ci
�j� is a 2�2 matrix. Insertion into Eq. �9� yields a set

of consistency equations for the matrices �Ci
�j��, viz.,

Ci
�j� = �F�C�i\j

�i� � + �12 + i�x�x − y�y��−1 �13�

for all i=1, . . . ,N and all j��i and where F is the matrix
field

F�C�i\j
�i� � = �

l��i\j
�Ail

h�x − Ail
s �y�Cl

�i��Ali
h�x − Ali

s �y� . �14�

Similarly, Eq. �11� gives the “true” covariance matrices

Ci = �F�C�i
�i�� + �12 + i�x�x − y�y��−1 �15�

for all i=1, . . . ,N. We pause for a moment now to determine
the structure of the matrices �Ci

�j��. Performing the inverse of
H in block form reveals enough information to allow us to
write generally

Ci
�j� � 	 ai

�j�
ib̄i

�j�

ibi
�j� di

�j� 
 ai
�j�,di

�j� � R+

bi
�j� � C

. �16�

If one has a solution set to Eq. �13�, the “true” local margin-
als are recovered from Eq. �15�. Recalling that the matrices
�Ci

�j�� and �Ci�, are dependent upon z and �, one may employ
Eq. �7� to determine the spectral density in terms of the func-
tion bi�bi�z , z̄ ,��,

�A�z, z̄� = −
1

�N
lim
�→0

�
i=1

N

�z̄bi�z, z̄,�� . �17�

To deal with the partial derivative appearing in Eq. �17�, we
use Eq. �13� to formulate a similar set of consistency rela-
tions for the partial derivatives of the covariance matrices
��z̄Ci

�j��:

�z̄Ci
�j� = − Ci

�j��	0 0

i 0

 − F��z̄C�i\j

�i� ��Ci
�j�. �18�

Similarly, the derivative of the “true” covariance matrix at i
is given according to Eq. �15� by

2In fact, this factorisation also applies in the fully connected case,
though the cause is statistical rather than topological.
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�z̄Ci = − Ci�	0 0

i 0

 − F��z̄C�i

�i���Ci. �19�

Equations �13�, �15�, �18�, and �19� comprise our main result.
For a given treelike matrix A, one iterates Eqs. �13� and �18�
together until convergence. The “true” marginals are then
recovered via Eqs. �15� and �19�, and finally the spectral
density is given by Eq. �17�.

FULLY CONNECTED LIMIT

To assess our approach from a theoretical viewpoint, we
�re�derive the generalized Girko’s law of Ref. �5� in the fully
connected limit. To do so, we first rewrite As→vAs with v2

= �1−�� / �1+��.
Consider statistically indepdendent matrices Ah and As,

with

E�Aij
h � = 0, E��Aij

h �2� = �1 + ��/2c , �20�

and similarly for As. Here, � is a parameter controlling the
degree of hermiticity; at �=1, A is Hermitian, whereas, at
�=0, A is maximally non-Hermitian. We will study the limit
of large c, by which we understand ki→c and c→	. First
notice that Eqs. �13� and �15�, along with the correlations
given above, imply Ci

�j�=Ci+O�1 /c�. Moreover, upon intro-
ducing

	 a ib̄

ib d

 = lim

c→	

1

c �
l��i

Ci, �21�

the spectral density takes the following form:

��z, z̄� = −
1

�
�z̄b�z, z̄� . �22�

Then, in the limit c→	 Eq. �15� yields

	 a ib̄

ib d

 =

1

ad + ��b + z�2	 a − i��b + z�

− i��b̄ + z̄� d

 ,

�23�

where we have set � harmlessly to zero. This equation is
easily solved giving

��z, z̄� = � 1

��1 − �2�
for 	 x

1 + �

2

+ 	 y

1 − �

2


 1,

0 else.
�
�24�

This is the well known generalized Girko’s law of Ref. �5�.

NUMERICAL RESULTS

For ensembles of sparse random matrices, the cavity
equations can be solved quickly by computer. We present the
results, in comparison with direct diagonalization, for two
cases: �i� symmetrically connected Poissonian random
graphs with average connectivity c and with asymmetric
Gaussian edge weights with zero mean and variance 1 /c and

�ii� asymmetrically connected Poissonian graphs with edge
weights drawn uniformly from the circle of radius 1 /�c.

Since numerical diagonalization of large matrices is a
computationally demanding task, we have chosen to study
relatively “small” matrices of size N=1000, even though the
cavity equations are capable of handling matrices many or-
ders of magnitude larger. In each case, we have diagonalized
numerically 105 such matrices, having an overall of 108 com-
plex eigenvalues, so as to have smooth two-dimensional his-
trograms.

For a given matrix, we use the cavity equations as a belief
propagation algorithm: we iterate Eqs. �13� and �18� together
until convergence is reached and, then, compute the spectral
density from Eqs. �15�, �19�, and �17�. The results are aver-
aged over 1000 samples.

The results from the cavity equations and comparison
with numerical diagonalization are presented in Figs. 1 and 2
for cases �i� and �ii�, respectively. To give a better view of
the detail, Fig. 3 shows a pair of slices taken from Fig. 2.
Notice that the ensembles in both cases satisfy the conditions
for Girko’s law in the limit c→	. However, it is evident
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FIG. 1. �Color online� Spectral density of symmetric Poissonian
graphs with asymmetric Gaussian edge weights and average con-
nectivity c=5. The red grid is a histogram of the eigenvalues of 105

samples and the blue solid lines are the result of the cavity equa-
tions, averaged over 1000 samples.
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FIG. 2. �Color online� Spectral density of asymmetric Poisso-
nian graphs with unitary edge weights and average connectivity
c=2. The red grid is a histogram of the eigenvalues of 105 samples
and the blue solid lines are the result of the cavity equations, aver-
aged over 1000 samples.
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from the figures that, for finite c, they have spectral densities
dramatically different both from each other and from the
limiting case of Girko’s law. Apart from small discrepancies
near the boundaries due to the discretization the histogram
introduces, the comparison shows excellent agreement.

CONCLUSIONS

In this paper we have considered the problem of deter-
mining the mean spectral density of ensembles of sparse
non-Hermitian random matrices. Following standard steps
�5,15�, the problem can be phrased in terms of a Gaussian
integral, which we interpret in the language of statistical me-
chanics of disordered systems as in Ref. �17�. Within this

framework, and following the steps of Ref. �10�, we apply
the cavity method, deriving a set of equations whose solution
characterizes the spectral density of a given sparse matrix.

As we have shown, our work puts analytical results such
as the generalized Girko’s law within easy reach, when ap-
propriate limits are taken. Moreover, a numerical solution for
finite-size matrices can be easily obtained by belief propaga-
tion, giving results in excellent agreement with those of di-
rect diagonalization.

In the case of dense matrices �both Hermitian and non-
Hermitian�, past studies using the techniques of supersym-
metry and replica analysis have found considerable success.
However, applied to sparse matrices, these approaches have
not proved as fruitful, leading to a set of saddle-point equa-
tions which have resisted numerical solution for over
17 years.

To make contact with these other approaches, note that, in
the ensemble average, the cavity and replica methods are
known to be equivalent. In fact, the solution we have given
here is common to all approaches and can also be derived
through a careful treatment of the aforementioned saddle-
point equations �18�.

For more than 50 years, rigorous analysis of the circular
law has proven to be rather difficult �4�. Therefore, it would
be a very exciting prospect to reconsider this problem by
using rigorous techniques introduced in the area of spin
glasses �e.g., the interpolation method�. Work along these
lines is under way �19�.
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FIG. 3. �Color online� Cuts along the lines x=0.3 and x=0.9
from Fig. 2.
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